Petroleum Systems of the San Joaquin Basin: Characterization of Oil and Gas Types

Les Magoon
References

Outline

- Introduction
- Oil characterization and correlation
- Oil-source rock correlation
- Map oil type distribution
- Gas characterization and correlation
- Gas origin
- Map gas type distribution
Oil Source Rocks

- Miocene Monterey Formation and equivalents
- Eocene Tumey formation
- Eocene Kreyenhagen Formation
- Cretaceous Moreno Formation
Previous Geochemical Studies

- **Kaplan and others 1988**, The petroleum geochemistry of crude oils and potential source rocks from the Paleogene of the San Joaquin and Ventura/Santa Barbara Basins, Pacific Section AAPG CD ROM Series 1, 2000

- **Peters and others, 1994**, Identification of petroleum systems adjacent to the San Andreas Fault, California, AAPG Memoir 60

Conclusions of Previous Studies

• Two main oil types in San Joaquin Basin
 – Miocene **Monterey** and equivalents
 – Eocene **Kreyenhagen**
• Other oil types recognized
 – Cretaceous Moreno
 – oil in Wygal Ss. Mbr. (Phacoides zone) of the Temblor Formation
Methods and Approach

- Analysis of 120 crude oils
 - Stable carbon isotopes
 - API gravity
 - Sulfur content
 - Biomarkers
- Integration with published data
- Define oil types
- Oil-source rock correlation
- Petroleum system mapping
Results - Isotopes

• Stable carbon isotopes show 3 oil types
 – EK
 – ET
 – MM

• All oil types derived from marine organic matter (below Sofer line)
Results – Pristane/Phytane

- Fourth oil type – CM recognized
- Some overlap between other 3 oil types
 - MM generally lower
 - EK generally higher
Results - Biomarkers

Saturated Hydrocarbons
GC-FID

3,4,5 ring Terpanes
m/z 191 GC-MS

Desmethyl Steranes
m/z 217 GC-MS
Results – Biomarker Ratios

• Bisnorhopane/hopane
 – MM oils have elevated values
 – CM, EK and ET oils have low values

• C26 tricyclics/C24 tetracyclic
 – MM oils have elevated values
 – EK and CM oils have low values

• C35/C34 extended hopanes
 – MM oils have elevated values
Mass Chromatograms of Terpanes - Monterey

Cal Canal field
Miocene Stevens reservoir

Elk Hills field
Pliocene Etchegoin reservoir

m/z 191

b = bisnorhopane
$26 = C_{26}$ tricyclics
$24 = C_{24}$ tetracyclic
$O = \text{oleanane}$

hopane

$b = \text{bisnorhopane}$
$o = \text{oleanane}$
$g = \text{gammacerane}$
PCA Analysis

- Using isotopes and biomarkers
 - 4 oil types
 - 2 subtypes of EK
 - 3 subtypes of MM
PCA Analysis

Factor Scores

Factor Loadings
Results – Sulfur Content

• Not useful for correlation
• None of the oil types are derived from Type II-S kerogen (including the Miocene Monterey and equivalents)
Results - Gravity vs Sulfur

The diagram illustrates the relationship between API Gravity (degrees) and Sulfur (weight percent) for various kerogen types.

- **Kerogen Type II**: High Sulfur, Medium Sulfur, Low Sulfur

Legend:
- **MM**
- **MM outlier**
- **ET**
- **ET outlier**
- **EK**
- **EK outlier**
- **CM**
High Sulfur Oils in California

• Outside of San Joaquin Basin
 – High sulfur oils are derived from Monterey Formation in Santa Maria and offshore Ventura basins
 – Type II-S kerogen source

• In San Joaquin Basin
 – High sulfur oils due to biodegradation
Correlation to Previous Studies

• Isotopes and pristane/phytane
• Good correlation of most samples to 3 main oil types
Oil Correlation with Previous Studies

Polygons represent USGS oil types

Terrigenous organic matter

Marine organic matter

δ¹³C aromatic hydrocarbons (%) vs. δ¹³C saturated hydrocarbons (%)
Oil Correlation with Previous Studies

Polygons represent USGS oil types
Main Oil Types

- Monterey and equivalents
 - Middle and upper Miocene
- Kreyenhagen
 - Middle Eocene
- Tumey
 - Upper Eocene - Oligocene (?)

Cretaceous Moreno is a minor oil type
Published source rock data
- Kaplan and others (1988)
- Curiale and others (1985)
• Used only isotopes and pristane/phytane
Correlation

- MM correlates with Monterey Formation
- ET correlates with Eocene Tumey
- EK correlates with Eocene Kreyenhagen
Petroleum Systems Summary

- Cretaceous Moreno (.)
- Middle Eocene Kreyenhagen (!)
- Upper Eocene Tumey (.)
- Middle and Upper Miocene Monterey and equivalents (!)
Geographic Distribution of Oil Types

- Monterey
 - Southern basin
- Tumey
 - Central and West-Central basin
- Kreyenhagen
 - Western half of basin
- Moreno
 - Limited to one field (NW basin)
Geochemical Indicators Reflect Miocene Paleogeography

- Composition of MM oils reflect the increased contribution of terrigenous organic matter to the marine basin near the Miocene paleoshoreline.
- For example, oleanane content (angiosperms)
Gas Geochemistry -
Previous Geochemical Studies

- *Rudkin, 1968*
- *Jenden and others, 1988*
- *Jenden and Kaplan, 1989*
- *Kammerling and others, 1989*
- *Claypool and others, 2000*
Source Rocks

- Pliocene San Joaquin Formation
- Miocene Monterey Formation and equivalents
- Eocene Tumey formation
- Eocene Kreyenhagen Formation
- Cretaceous Moreno Formation
Conclusions of Previous Studies

- Northern basin gas may be a southern extension Winters-Domengine gas system in Sacramento Basin.
- Shallow gases in Pliocene reservoirs have biogenic source
- Associated gases related to oil source
Methods and Approach

• Analysis of 66 gas samples
 – Stable carbon isotopes (C₁ to C₅, CO₂)
 – Gas composition
• Integration with published data
• Define gas types
• Hypothetical source rocks/petroleum systems
75% of samples from oil fields (associated gas) Basin is an oil province.
Results – δ^{13}C Methane vs Wetness

- 3 gas types
 - Thermogenic Dry (TD)
 - Thermogenic Wet (TW)
 - Biogenic (B)
- Mixed thermogenic and biogenic
 - TD-mixed
 - TW-mixed
Results – δ^{13}C Methane vs Nitrogen

- Thermogenic Dry (TD) can be subdivided
 - TD-1 higher δ^{13}C methane and nitrogen
 - TD-2 lower δ^{13}C methane and nitrogen
- Biogenic (B)
 - Bo gas samples have high nitrogen
Results – $\delta^{13}C$ Methane vs $\delta^{13}C$ Ethane

- Thermogenic Wet (TW) can be subdivided
 - TW-1 higher $\delta^{13}C$ methane relative to ethane, distinct thermal maturity trend.
 - TW-2 lower $\delta^{13}C$ methane, weak thermal maturity trend.
 - TW-mixed has $\delta^{13}C$ methane < -45 per mil.
Thermogenic Dry (TD) Gas Type

- **TD-1**
 - Cretaceous reservoir rocks
 - Northern basin
 - Proposed Moreno source
 - Good source rock
 - Mature down-dip from fields

- **TD-mixed**
 - Cretaceous, Eocene, Miocene reservoirs
 - Northern basin
 - Moreno and biogenic mixed source

- **TD-2** – altered TW-2 gas type
Thermogenic Wet (TW) Gas Type

• TW-1
 – Eocene Oligocene reservoirs
 – Associated gas
 – Eocene Kreyenhagen or Tumey source

• TW-2
 – Mostly Miocene reservoirs
 – Associated gas
 – Miocene Monterey Formation source
 – Some altered to TD-2 gas type

• TW-mixed
 – Mixed biogenic and TW gas
Biogenic (B) Gas Type

- **B gas**
 - Pliocene San Joaquin Formation reservoir
 - Methanogenesis of San Joaquin Formation organic matter

- **Bo gas (two samples)**
 - Miocene reservoirs
 - High nitrogen
 - Unknown origin
Origin of Carbon Dioxide

- Samples with <2% CO2 and δ13C values less than zero per mil.
 - Thermal degradation of organic matter
- Samples with >2% CO2 and δ13C values greater than +2 per mil.
 - Residual gas from methanogenesis produced during petroleum biodegradation
Petroleum Systems

- TD-1 and TD-mixed
 - Moreno-Nortonville(.) gas system
 - (Winters-Domengine Total Petroleum System)
- TW gas types (associated gas)
 - Included with corresponding Eocene or Miocene total petroleum systems
- B gas
 - Pliocene San Joaquin(.) gas system
 - (Neogene Nonassociated Gas Total Petroleum System)